Improving a natural enzyme activity through incorporation of unnatural amino acids.
نویسندگان
چکیده
The bacterial phosphotriesterases catalyze hydrolysis of the pesticide paraoxon with very fast turnover rates and are thought to be near to their evolutionary limit for this activity. To test whether the naturally evolved turnover rate could be improved through the incorporation of unnatural amino acids and to probe the role of peripheral active site residues in nonchemical steps of the catalytic cycle (substrate binding and product release), we replaced the naturally occurring tyrosine amino acid at position 309 with unnatural L-(7-hydroxycoumarin-4-yl)ethylglycine (Hco) and L-(7-methylcoumarin-4-yl)ethylglycine amino acids, as well as leucine, phenylalanine, and tryptophan. Kinetic analysis suggests that the 7-hydroxyl group of Hco, particularly in its deprotonated state, contributes to an increase in the rate-limiting product release step of substrate turnover as a result of its electrostatic repulsion of the negatively charged 4-nitrophenolate product of paraoxon hydrolysis. The 8-11-fold improvement of this already highly efficient catalyst through a single rationally designed mutation using an unnatural amino acid stands in contrast to the difficulty in improving this native activity through screening hundreds of thousands of mutants with natural amino acids. These results demonstrate that designer amino acids provide easy access to new and valuable sequence and functional space for the engineering and evolution of existing enzyme functions.
منابع مشابه
Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity.
In this study we have replaced all 13 methionine residues in the cytochrome P450 BM-3 heme domain (463 amino acids) with the isosteric methionine analog norleucine. This experiment has provided a means of testing the functional limits of globally incorporating into an enzyme an unnatural amino acid in place of its natural analog, and also an efficient way to test whether inactivation during per...
متن کاملEnhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis.
The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at...
متن کاملImproving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells.
Optimizing the anticodon recognition between orthogonal tRNA and synthetase significantly increased the incorporation efficiencies of various unnatural amino acids in mammalian cells, and the enhanced incorporation enabled efficient photocrosslinking of interacting proteins in mammalian cells.
متن کاملA kinetic safety gate controlling the delivery of unnatural amino acids to the ribosome.
Improving the yield of unnatural amino acid incorporation is an important challenge in producing novel designer proteins with unique chemical properties. Here we examine the mechanisms that restrict the incorporation of the fluorescent unnatural amino acid εNH2-Bodipy576/589-lysine (BOP-Lys) into a model protein. While the delivery of BOP-Lys-tRNA(Lys) to the ribosome is limited by its poor bin...
متن کاملFine-tuning Interaction between Aminoacyl-tRNA Synthetase and tRNA for Efficient Synthesis of Proteins Containing Unnatural Amino Acids
By using a directed evolution approach, we have identified aminoacyl-tRNA synthetase variants with significantly enhanced activity for the incorporation of unnatural amino acids into proteins in response to the amber nonsense codon in bacteria. We demonstrated that the optimization of anticodon recognition of tRNA by aminoacyl-tRNA synthetase led to improved incorporation efficiency that is unn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 133 2 شماره
صفحات -
تاریخ انتشار 2011